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ABSTRACT 

A unified overview is given of problem formulation approaches for the optimization of 

multidisciplinary coupled systems. The overview includes six fundamental approaches upon 

which a large number of variations may be made. Consistent approach names and a compact 

approach notation are given. The approaches are formulated to apply to general nonhier- 

archic systems. The approaches are compared both from a computational viewpoint and 

a managerial viewpoint. Opportunities for parallelism of both computation and manpower 

resources are discussed. Recommendations regarding the need for future research are ad- 
vanced. 
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I. Introduction 

The increased demands of economic competition and the complexity of engineering systems have led to 
the rapid growth of the field of multidisciplinary design optimization (MDO) over the past decade (AIAA 

White Paper 1991). The field of MDO is concerned with how to analyze efficiently and design optimally 

a system governed by multiple coupled disciplines or made up of coupled components. It is a part of 

the concurrent engineering technology which may well be an enabling technology for complex advanced 
systems (Sobieszczanski-Sobieski and Tulinius 1991). 

Several approaches to problem formulation have emerged in a rather ad hoc fashion over the years. 
A unified overview of MDO approaches is given in this paper. Fundamental approaches are defined and 
endowed with consistent names, and a compact notation is introduced which uniquely distinguishes 
between the large number of variations which exist. Some of the fundamental approaches presented here 
have been significantly modified from the way they were originally introduced, and at least one may be 
regarded as new. This overview was inspired by the previous work of (Cramer et al. 1993) which was 
one of the first attempts to classify approaches to MDO. That work was limited to single-level 
optimization approaches while the overview presented in this paper covers both single and multilevel 
optimization approaches. 

In the past, MDO approaches have been categorized as either hierarchic or nonhierarchic according 
to the types of systems to which they apply (Sobieszczanski-Sobieski 1990a). In hierarchic systems, 
children disciplines are coupled only to parent disciplines and not to each other. Nonhierarchic systems 
are more general since no restrictions are placed on how disciplines are coupled. MDO approaches are 
presented here in a form applicable to general nonhierarchic systems. Approaches which have traditionally 
been thought to be limited to hierarchic systems are formulated here to apply to nonhierarchic systems. 

The fundamental approaches are compared in this paper. Typical values for problem size and iteration 
parameters are assumed, and the order of magnitude of computational effort is estimated for several test 
cases and implementation options. Managerial strengths and weaknesses of the fundamental approaches 
are also noted. Finally, recommendations for needed research are advanced. 

II. A Coupled System 

Consider the three-discipline system shown in Figure 1 as a basis for discussion. Each box in the figure 
represents a module that transforms input to output. These modules may correspond to disciplines or 
components, but for uniformity the term "discipline" will be used throughout to refer to a module. The 
three-discipline system is small enough to keep the discussion simple but large enough to develop patterns 
that extend to systems that include more disciplines. The system might be an aircraft wing where 
Disciplines 1, 2, and 3 represent aircraft performance, aerodynamics, and structures, respectively. 
Alternatively, the disciplines might represent physical components of a system such as the fuselage, the 
wings, and the propulsion system. In either case, the disciplines are coupled to each other by the output- 
to-input data exchanges. The variables and functions shown in Figure 1 will now be explained. Table 1 



identifies what these variables and functions represent for the aircraft wing example. The reader is 

encouraged to refer back to this table for examples of the abstract definitions which follow. 

It is assumed that all functions are calculated within the disciplines. This calculation operates on a 

set of state equations for values of state variables. The vectors slf s^ and s3 contain the state variables for 

each of the disciplines. 

The vectors rls r2, and r3 are the residuals in the state equations for the disciplines. Disciplinary 

analyzers seek values for the state variables which reduce the residuals in the state equations to zero. 

Disciplinary evaluators evaluate the residuals in the state equations for given values of the state variables. 

Obviously, the computational effort required by a disciplinary evaluator is significantly less than that 

required by a disciplinary analyzer. An additional task that is embedded in either disciplinary analyzers 

or disciplinary evaluators is computation of the coupling functions, the design constraint functions, and 

the design objective functions as it will be explained later. 

The vectors y12, y13, y21, y23, y3J, and y32 are the coupling functions. Note that y^ contains those 

functions computed in Discipline i which are needed as input to Discipline j. It is these coupling functions 

which complicate the order of execution of the disciplinary analyzers (or evaluators). By associating with 

each vector of coupling functions a corresponding vector of coupling variables (y,,*, y13*, y21*, y^*, y31*, 

and y32*), the disciplinary analyzers (or evaluators) may be executed in parallel. Each receives coupling 

variables as input and computes coupling functions as output. One of the tasks of MDO is to satisfy 

coupling equality between each coupling variable and its corresponding coupling function. 

The vectors x, xv x2, and x3 are mutually disjoint sets of design variables. Design variables 

represent the independent inputs which distinguish one design from another. Note that x contains system 

design variables needed by more than one discipline. The vectors xv x2, and x3 contain disciplinary design 

variables associated with Disciplines 1, 2, and 3, respectively. 

The vectors gx, g2, and g3 contain the design constraint functions. The design constraints normally 

guard against failure and otherwise unacceptable behavior. Only inequality constraints are considered here, 

and it is assumed that each constraint has been formulated such that zero is its allowable value, and it is 

satisfied when less than zero. 

The vectors ix, f2, and f3 contain the design objective functions. As mentioned before, the design 

constraint and design objective functions are computed either in disciplinary analyzers or disciplinary 

evaluators. Design objectives normally minimize cost and maximize benefits, and therefore, may be 

competing. It is assumed that each objective has been formulated such that it is improved through 

minimization, and the value of zero is associated with its selected target value. It is possible to cast 

objectives as constraints and vice versa. Thus, constraint and objective functions will collectively be 

called design functions, and their associated inequality constraints and minimization will collectively be 

called the design criteria. 

The task at hand is to determine the values of the design, state, and coupling variables which satisfy 

the state equations, the coupling equalities, and the design criteria. 



III. The Fundamental Approaches 

The fundamental approaches to MDO formulation vary in two aspects. First is the distinction between 

single-level optimization and multilevel optimization. In multilevel optimization approaches, the 

disciplinary design variables are determined by disciplinary optimizers and the system design variables 

are determined by the system optimizer. In single-level optimization approaches, both disciplinary and 

system design variables are determined by the system optimizer. 

Second is the choice between simultaneous analysis and design (SAND) and nested analysis and 

design (NAND). This distinction can be made at both the system and the discipline levels. At the 

discipline level, SAND implies that the disciplinary design and state variables are determined 

simultaneously by the optimizer, while NAND implies that the optimizer determines only the disciplinary 

design variables and requires determination of the state variables at each iteration. Thus, at each iteration 

of the optimizer, disciplinary evaluators are called for SAND while disciplinary analyzers are called for 
NAND. 

At the system level, SAND implies that system design variables and coupling variables are determined 

simultaneously by the system optimizer, while NAND implies that the system optimizer determines only 

the system design variables and requires determination of the coupling variables at each iteration by calling 
a system analyzer. 

Each fundamental approach has a three part name. The first part indicates whether the approach is 

a multilevel optimization or a single-level optimization approach. The middle and last parts of the name 

indicate SAND vs. NAND at the system and discipline levels, respectively. 

Single-SAND-SAND 

In this approach all variables are determined simultaneously by the system optimizer, and disciplinary 

evaluators are called at each iteration to compute all the functions. Figure 2 displays boxes corresponding 

to the system optimizer and to the disciplinary evaluators. This figure, as well as those which follow, 

shows where the data originate and where they are being used. To that end, individual variables and 

functions are listed within the boxes where they are determined, and the arrows point to the boxes where 

each is needed. The figures are not flowcharts and do not convey information about sequencing of the 

execution of the boxes, except that the execution of the boxes to the right is nested within the execution 

of the boxes to the left. The execution sequencing is explained in the narrative and by using a special 

notation introduced later. The Single-SAND-SAND approach has been referred to as the "All-At-Once" 

approach (Cramer et al. 1993). It has been demonstrated on single-discipline examples (Haftka 1985, 

Ta'asan et al. 1992, Hou et al. 1993), but multidisciplinary applications are scarce. The system 

optimization problem is: 

Find: f»x,Xi,x2,X3,y12*,y13*,y21*,y23*,y31*,y32*,s1,s2,S3 



Minimize: f 

Satisfy: gi<0, g2<o, g3<o, 
f,<f, f2<f, f3<f, 

y« = yn, y« = yi3*> 

y2i = Y2i*. y23 = y^*. 

y3i = y3]*5 y32 = y32*> 

Ji = 0, r2 = 0, r3 = 0 

Note the addition of the scalar design variable, f, the system objective. By minimizing this variable 

and constraining it to be greater than each of the disciplinary objectives, the maximum of the objectives 

is effectively minimized. This multiobjective formulation is known as the "minimax formulation," and 

is just one of several formulations. Note that the minimax formulation treats all design functions as 

inequalities whether they be constraints or objectives. As with all multiobjective formulations, the results 

largely depend on the scaling and the choice of allowable/target values of the design functions. 

Single-SAND-NAND 

This approach is like the Single-SAND-SAND approach except that disciplinary analyzers rather than 

disciplinary evaluators are called at each iteration of the system optimizer as shown in Figure 3. Note the 

disappearance of the state variables and the residuals since these become internal to the disciplinary 

analyzers. This approach is also referred to as the "Individual Discipline Feasible" approach (Cramer et al. 

1993). It has been demonstrated on nonhierarchic, multidisciplinary examples (Haftka et al. 1992). The 

system optimization problem is: 

Find: £x,x1,x2,x3,yI2*,yu*,y21*,yö*,y31*,y32* 

Minimize: 

Satisfy: 

f 

&<o, g2<o, g3<o, 
f,<f, f2<f, f3<t 
y« = y«*. y» = yi3*. 

y2i = y2i*> y* = y**» 

y3i = y3i*> y32 = y32* 



Single-NAND-NAND 

In this approach, a system analyzer is called at each iteration of the system optimizer to determine the 

values of the coupling variables which match their corresponding coupling functions. The system analyzer 
itself is typically iterative, and it calls upon disciplinary analyzers at each iteration as shown in Figure 4. 

This approach is also referred to as the "Multidiscipline Feasible" approach (Cramer et al. 1993). It has 
been demonstrated more than any other approach on nonhierarchic, multidisciplinary examples (Grossman 
et al. 1989, Hajela et al. 1990, Sobieszczanski-Sobieski et al. 1991, Haftka et al. 1992). The system 
optimization problem is: 

Find: f,x,xvx2,x3 

Minimize:        f 

Satisfy: gl < 0, g2 < 0, g3 < 0, 
fj<f, f2<f, f3<f 

The first three fundamental approaches which have now been presented illustrate the difference 
between SAND and NAND. The NAND approaches have received the most attention. The SAND 
approaches add coupling and state variables to the set of variables determined by the optimizer. It is 
likely that this increased set of variables will affect the convergence properties of the entire process. 
Whether the total computational effort increases or decreases depends on the problem at hand. 

Multi-SAND-SAND 

In this approach, disciplinary optimizers which simultaneously determine the disciplinary design and state 
variables are called at each iteration of the system optimizer as shown in Figure 5. The system optimizer 
simultaneously determines the system design and coupling variables. This new approach has never been 
demonstrated. The system optimization problem is: 

Find: W^y^y^y^*^*^* 

Minimize:        f 

Satisfy: dx < 0, d2 < 0, d3 < 0 

The scalars d1} d2, and d3 are discrepancy functions computed by the disciplinary optimizers.  The 
disciplinary optimization problem for Discipline i is: 



Find: Xi,Sj,dj 

Minimize: di 

Satisfy: g, < dj, frf<di, 

yu-y«* < di, y,j*-yij < di, 

fi < di5 -r, < di 

(1) 
for j:*i ( 2 ) 

(3) 

Note that the disciplinary optimizer seeks to minimize the maximum discrepancy in the design criteria (1), 

the coupling equality (2), and the state equations (3). This max norm formulation may cause the 

discrepancy functions in the system optimization problem to be nonsmooth, and an appropriate system 

optimization algorithm should be used (Balling and Sobieszczanski-Sobieski 1994). 

Multi-SAND-NAND 

The only difference between this approach and the Multi-SAND-SAND approach is that disciplinary 

analyzers are called at each iteration of the disciplinary optimizers as shown in Figure 6. The system 

optimization problem is identical to the system optimization problem for the Multi-SAND-SAND 

approach.  The disciplinary optimization problem for Discipline i is: 

Find: Xj,d; 

Minimize: dj 

Satisfy: g, < di? frf < di5 (4) 

y«-yij*<di.     yij*-yij<di     forj« (5) 

This approach has been referred to as "multilevel optimization by hierarchic linear decomposition" 

(Sobieszczanski-Sobieski 1982). Various forms of the approach have been widely demonstrated on 

hierarchic, multidisciplinary examples (Wrenn and Dovi 1987; Walsh et al. 1994). Note that the 

formulation given above is equally applicable to nonhierarchic examples. Nevertheless, it has not yet been 

demonstrated on nonhierarchic multidisciplinary examples. 

Again, note the minimization of the max norm of the discrepancy in design criteria (4) and coupling 

equality (5). Alternative formulations for the disciplinary optimization problem have been suggested. 

Originally it was proposed to minimize the norm of discrepancy in design criteria while satisfying 

coupling equality (Sobieszczanski-Sobieski 1982): 

Find: x^d; 



Minimize: dj 

Satisfy: g < dj, frf < ds, 

Yij = y«* forj*i 

The converse formulation which minimizes the norm of discrepancy in coupling equality while 

satisfying the design criteria has also been suggested (Schmit and Ramanathan 1973; Sobieszczanski- 

Sobieski 1993): 

Find: x^dj 

Minimize: ds 

Satisfy: g, < 0, fs < f, 

yij-yij*<di,      y8*-yfi<d,       forj« 

Both of these latter formulations suffer from the possibility that there may be no feasible solution to 

disciplinary optimization problem given the values of the system design variables and coupling variables 

sent down from the system. 

Alternatives to the max norm have also been proposed for the disciplinary optimization problem. One 

family of norms that has been suggested is the "KS family" named for (Kreisselmeier and Steinhauser 
1983): 

Find: Xj 

Mimmize: d, = (1/p) ln{ 2exp(pgi) + Zexp(p(frf)) + (^^PexpCp^-y,*)) + SexpCpCy^-y^))] } 

The parameter p is a positive real number, the sum J,H is over the disciplines other than Discipline i, 

and the other sums are over the elements of the vectors involved. As p goes to infinity, the KS norm 

becomes equivalent to the max norm. Otherwise, the KS norm is greater than the max norm by an 

amount which is bounded by (l/p)ln(m) where m is the sum of the lengths of the vectors gi; 4 and yr for 

Another family of norms that was used in (Schmit and Ramanathan 1973) is the "lp family": 

Find: Xj 

Minimize:        d, = { I(max(0,gi))P + Z(max(0,frf))P + ^p^-y^p] }* 

The parameter p is a positive integer and the sums are the same as for the KS family of norms. The 

12 norm is the familiar Euclidean norm, and as p goes to infinity, the lp norm becomes equivalent to the 



max norm.   Further discussion of the use of these norms in MDO is given elsewhere (Balling and 

Sobieszczanski-Sobieski 1994). 

Multi-NAND-NAND 

It is difficult to formulate an approach which utilizes both disciplinary optimizers and a system analyzer. 

An adequate formulation which nests the former inside the latter has not been developed. A Multi- 

NAND-NAND formulation which first executes the system analyzer and then executes the disciplinary 

optimizers is possible as shown in Figure 7. Thus, at each iteration of the system optimizer, the 

disciplinary design variables are held fixed while a system analyzer is executed to determine the coupling 

variables, and then the coupling variables are held fixed while disciplinary optimizers are executed to 

determine the disciplinary design variables. Disciplinary analyzers are called at each iteration of both the 

system analyzer and the disciplinary optimizers. 

A Multi-NAND-NAND approach was first proposed in (Sobieszczanski-Sobieski 1988) and 

subsequently developed, augmented with heuristics, and demonstrated on nonhierarchic, multidisciplinary 

examples (Bloebaum 1991; Eason et al. 1994). The formulation presented here is somewhat similar. In 

addition to determining the coupling variables, the system analyzer computes a scalar cumulative design 

function for each discipline: q = max(gi,fi-f). These functions as well as their sensitivities with respect 

to disciplinary design variables are sent as constants to the disciplinary optimizers. The optimization 

problem for Discipline i is: 

Find: Xj,dj 

Minimize: d; 

Satisfy: ft-c^l-pa) < d^-f-qfl-pa) < di? ( 6) 

Cj*-Cj(l-Pij) < d; forj*i (7) 

The functions c* for j*i are first-order approximations of the cumulative design functions for the other 

disciplines based on the constants and sensitivities received from the system analyzer. Thus, Discipline i 

has some responsibility for satisfying the design constraints of the other disciplines. The scalars pu for 

j*i in (7) are the responsibility fractions allocated to Discipline i. Similarly, some of the responsibility 

for satisfying the design constraints of Discipline i is shifted to the other disciplines. The scalar p^ in (6) 

is the responsibility fraction that remains with Discipline i. The system optimization problem insures that 

the responsibility fractions sum to unity: 

Find: f,X>Pll,Pl2>Pl3>P21>P22>P23>P31>P32>P33 

Minimize: f 



Satisfy: c^ < 0, d2 < 0, d3 < 0, 

Pll+P21+P31 = 1» Pl2+P22+P32 = h P13+P23+P33 = 1 

IV. Variations on the Fundamental Approaches 

The fundamental approaches may be modified by: 1) mixing, 2) sequencing, and 3) composing. The 

fundamental approaches may be mixed by varying the usage of disciplinary optimizers, analyzers, and 

evaluators across disciplines. For example, one discipline may possess several disciplinary design 

variables while another may have few or even none. It may be wise to employ a disciplinary optimizer 

with the former (multilevel approach) but not with the latter (single-level approach). Similarly, 

disciplinary analyzers may be used in some disciplines (NAND approach) while disciplinary evaluators 

are used in others (SAND approach). 

Sequencing requires that disciplinary analyzers (or evaluators) are executed sequentially rather than 

in parallel. This allows deletion of some of the coupling variables. In the three-discipline example, if 

Analyzer 1 is always executed before Analyzers 2 and 3 which are still executed in parallel, the coupling 

functions y12 and y13 output from Analyzer 1 may be sent directly as input to Analyzers 2 and 3, and there 

is no need for the coupling variables y12* and y13*. However, the coupling variables y2i*, y^*, y31*, and 

y32* are still needed. The loss of parallelism may be small if Analyzer 1 is significantly longer 

computationally than Analyzers 2 and 3. 

Composing allows one to treat a disciplinary optimizer in a multilevel approach as a system optimizer 

for a system within the discipline. In this way multilevel approaches may be extended to more than two 

levels. For example, because of the potentially large number of structural design variables, the structures 

discipline may be treated as a coupled system comprised of subdisciplines corresponding to spars, ribs, 

stringers, and skin as well as the assembled structure. Optimizers, analyzers, and/or evaluators may then 

be employed for each subdiscipline. The coupling variables between the subdisciplines in the structural 

system are viewed as the state variables of the structures discipline in the wing system. 

Because of the large number of possible variations, it is impractical to try to give names to each. 

Nevertheless, a compact notation which captures the subtle differences between variations can be 

introduced. In this notation: 

SO = System Optimizer 

SA = System Analyzer 

Ej   = Evaluator Discipline i 

Aj  = Analyzer Discipline i 

Oj  = Optimizer Discipline i 

[ ]  = nested execution 

||    = parallel execution 

->   = sequential execution 



Nested execution has the highest precedence followed by parallel execution and finally by sequential 

execution.  Using this notation, the compact formulas for the fundamental approaches are: 

Single-SAND-SAND SOpEj || E21| E3] 

Single-SAND-NAND SOfAj || A21| A3] 

Single-NAND-NAND SO[SA[A, || A21| A3]] 

Multi-SAND-SAND SOtO^EJ || 02[E2] || 03[E3]] 

Multi-SAND-NAND SOfC)^^] || 02[AJ || 03[A3]] 

Multi-NAND-NAND SO[SA[A, || A21| A3] -> O^AJ || 02[A2] || 03[A3]] 

Each of the above formulas codes full information about the execution sequencing and may be 

regarded as a surrogate for a flowchart. Thus, a concise definition of each fundamental approach consists 

of its data flow diagram given in one of the Figures 2 to 7 and of its execution sequence recipe coded in 

its corresponding formula above. 

The following three-level approach is an interesting and plausible example which involves mixing, 

sequencing, and composing. Discipline 1 is aircraft performance, Discipline 2 is aerodynamics, Discipline 

3 is structures, Discipline 4 is the assembled structure, and Disciplines 5 through N are spars, ribs, 

stringers, skin, etc.: 

SOfA, -> A2 -> S03[A4 -> O^A,] II ... || 0N[AN]]] 

Discipline 3 is itself a system, and as with all systems, it is assumed that all design and coupling 

functions are computed within its disciplines (4 through N). Thus, there are no f's, g's, nor y's with "3" 

subscripts. There may, however, be system design variables associated with the structures system, x3. 

Assume for now that Disciplines 5 through N are coupled only to Discipline 4, and not to each other nor 

to Disciplines 1 and 2. The optimization problem for the entire system is: 

Find: f,x,x1,x2,y2) ,y4j ,y42 

Minimize: f 

Satisfy: gi<0, f,-f < o, 
g2<o, f2-f < 0, 

d3<0 

10 



The optimization problem for the structures system (System or Discipline 3) is: 

Find: x3,x4,y54*,...,yN4*,d3 

Minimize: d3 

Satisfy: g4<d3» f4-f < d3, 

„y4i-y4i* < d3, y«*-y4i < d3, 

y42-y42* < d3, y42*-y42 < d3, 
d4<d3,    , dN<d3 

The optimization problem for Discipline i where i ranges from 5 to N is: 

Find: x^dj 

Minimize: dj 

Satisfy: & < di5 fi-f<di, 

y,4-y,4* < dj, yi4*-y,4 < dj 

V. Implementation Options 

A limited but necessary discussion of implementation options is given in this section. Different methods 
which may be implemented within evaluators, analyzers, and optimizers will be mentioned here to 
establish a background for the next section where computational effort is estimated. Since analyzers and 
optimizers may be gradient-based, methods of calculating sensitivities are also described. It should be 
mentioned that implementation options also include the choice between serial and parallel computing 
which will be treated in the next section rather than here. 

Disciplinary Analyzers and Evaluators 

Disciplinary evaluators determine the residuals in the state equations while disciplinary analyzers determine 
the values of the state variables which reduce the residuals to zero. Most existing engineering software 
packages are of the disciplinary analyzer variety. They typically exploit specialized techniques and models 
which have evolved within the discipline, and they may solve the state equations directly or iteratively. 

The derivatives of outputs from disciplinary analyzers or evaluators with respect to inputs are referred 
to as disciplinary sensitivities. These sensitivities may always be computed by a finite difference 
approximation (FD), however, computational efficiency and accuracy may be gained by directanalytical 

11 



sensitivity (DAS) based on implicit differentiation of the state equations (Adelman and Haftka 1986). This 

option has become available in an increasing number of analyzers. A recently introduced alternative is 

"automatic differentiation" (Bischof et al. 1992). 

Disciplinary Optimizers 

Disciplinary optimizers solve the disciplinary optimization problems of the various multilevel optimization 

approaches. These optimizers call disciplinary analyzers or evaluators to compute their constraints. In 

some disciplines, specialized techniques and models have been developed for efficient optimization (e.g., 

the optimality criteria methods of the structures discipline). In other disciplines, general-purpose nonlinear 

programming algorithms may be used. Some disciplines might involve combinatorial or stochastic search 

if discrete or topological variables are present. Still in other disciplines, optimization may be quite 

informal consisting of empirical rules and procedures of design practice. 

The only function that a disciplinary optimizer returns to the system optimizer is its objective, the 

discrepancy function d; Calculation of the derivative of the optimal objective with respect to fixed 

parameters is known as optimum sensitivity analysis (OSA). It has been shown that when formal 

optimization algorithms are used in disciplinary optimization, OSA can be calculated directly from the 

Lagrange multipliers and disciplinary sensitivities (Barthelemy and Sobieszczanski-Sobieski 1983). 

System Analyzer 

The system analyzer determines the values of coupling variables which match their corresponding coupling 

functions as computed by disciplinary analyzers. There are two basic iterative techniques commonly used. 

The first is fixed-point iteration in which the coupling functions computed from one iteration are used as 

the coupling variables at the start of the next iteration. Iterations continue until the change in coupling 

variables is negligible. The second technique is Newton's method which employs not only the coupling 

functions but their derivatives with respect to the coupling variables at each iteration in order to accelerate 

convergence. Sequencing may be applied to either technique to eliminate some of the coupling variables 

altogether. 

The derivatives of the converged coupling variables can be computed by solving a linear set of 

equations known as the global sensitivity equations (GSE) (Sobieszczanski-Sobieski 1990b). The 

coefficients and right-hand-side vectors in the GSE consist of disciplinary sensitivities. The GSE method 

for system sensitivity analysis is an alternative to FD at the system level, just as DAS is an alternative to 

FD at the disciplinary level. 

12 



System Optimizer 

The system optimizer solves the system optimization problem of the various approaches. This optimizer 

may call disciplinary optimizers, analyzers, and/or evaluators as well as a system analyzer. Therefore, it 

is imperative that the system optimizer calls for constraint evaluation as few times as possible. It is 

recommended that the system optimizer repeatedly constructs approximations of the constraints and 

optimizes the approximate problem. As this succession of approximate optimization problems proceeds, 
move limits on the variables should be adaptable to insure robust convergence. 

Two families of constraint approximations are possible. The first is the local approximation family 
in which the approximation is based solely on the exact values of the constraints and their gradients 
evaluated at the current design. A first-order approximation of the constraints can then be constructed. 
The second family is the global approximation family in which a few exact constraint evaluations are 
performed throughout optimization variable space, and the results are fitted with simple approximate 
functions (Box and Draper 1987). Statistical methods from the design of experiments are useful for 
selecting the best locations to perform exact constraint evaluation. 

VI. Computational Cost 

This section presents an attempt at comparing the fundamental approaches introduced in the foregoing, 
based on their computational cost regarded as the primary concern to the user. However, not all user's 
concerns may be reduced to cost because, if one interprets the "disciplines" as human organizations, the 
managerial advantages to be discussed later become another set of considerations important to users. 

Computational Cost Measure 

Computational cost may be measured in a number of ways, e.g., the CPU time, the elapsed real time (ET), 
the required memory, etc. This section presents cost evaluation of the fundamental approaches introduced 
in the foregoing, based only on their ET for computing, exclusive of the time needed for the data 
transmission and other overhead functions. It is difficult to provide a truly objective cost evaluation 
because the problem dependence of the assumptions and parameters involved taints any cost comparison 
of the foregoing approaches as being speculative. Furthermore, there are many variations of the 
fundamental approaches as well as many options for serial implementation (SI) and parallel 
implementation (PI). 

To circumvent the above difficulties the system at hand was examined at only two levels of 
complexity as measured by the number of interacting disciplines: a very simple system of two disciplines, 
and one whose number of disciplines was increased by one order of magnitude (OOM) to twenty. Four 
implementation options were investigated as given in Table 2. 

13 



For each of the implementation options, the ET was calculated at each of the two levels of complexity 

using formulas that link it to the parameters of the optimization and analysis problems. The parameters 

that define the analysis and optimization dimensionalities and affect ET are the lengths NX, NXj, NYy, 

and NSj of the previously defined variable vectors x, Xj, y;j, and sr Additional parameters relative to the 

number of iterations required for the various iterative procedures will be defined later. These parameters 

were systematically varied in the ET calculations in a series of numerical experiments to obtain data for 

the cost comparison. 

Evaluation of ET 

The computation time estimates for a conventional serial implementation (SI) were based on the 

assumption that the ET value is proportional to the number of the floating-point multiplications (FLMs). 

Omitting the proportionality coefficient, the ET is simply equated to the FLM count formulas commonly 

used in numerical methods. 

The number of FLMs required to solve a nonsymmetric dense linear system of state equations for 

Discipline i by a direct method is approximately NSj3/3. If the state equations are nonlinear, then the 

direct method may be embedded within an iterative scheme, and the number of FLMs required for analysis 

may be approximated as: 

CAj = MA • NSj3/3 

where MA is the number of iterations. The above formula was used in the estimates of the ET given in 

this paper, even though it is realized that if the state equations are sparse, the CAj may be reduced 

significantly to CAj = b • MA • NSS
2 where coefficient b depends on the degree of sparsity. Furthermore, 

if the state equations are sparse and solved iteratively rather than directly, CAj may be reduced further to 

CAj = b • MI • NSj where MI is the number of iterations. 

The number of FLMs required to evaluate the state equations (rather than solve them) was taken as 

the product of a matrix and a vector, hence: 

CEj = NSj2 

The number of FLMs required to solve a dense linear optimization problem with NV optimization 

variables is approximately 1.5 • NV3. The optimization variables in the various system and disciplinary 

optimization problems depend on the approach and may include design, coupling, and state variables. If 

nonlinear optimization problems are solved by solving a sequence of linearized problems, the number of 

FLMs may be approximated as: 

CO = MO • 1.5 • NV3 
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where MO is the number of linearized problems solved. The above formula was used in the estimates 

of the ET given in this paper. In addition to the above formula, each linearized problem requires a single 

sensitivity analysis (or evaluation). 

The number of FLMs required for a single sensitivity analysis with repect to NV variables depends 

on the implementation option: 

SI/FD: CS = SiCCAj • (1+NV)) 

SI/DAS: CS = ^(CAi+CEi ■ NV) 

PI/FD: CS = maXjCCAj) 

PI/DAS: CS = max^CAj+CEi) 

where the sums and max's are taken over the disciplines. Note that for the DAS implementations it was 

assumed that sensitivities can be calculated cheaply via backsubstitutions after the nonlinear iterations are 

converged. It should be noted that in the DAS implementations, sensitivities with respect to any state 

variables are cost-free since these sensitivities are simply the coefficients in the state equations themselves. 

Note that the parallel implementations assume an unlimited number of processors where each has enough 

memory to execute a disciplinary analysis. This is an assumption of a coarse-grained implementation on 

an "ultimate" machine which may either be a single multiprocessor computer or an equivalent computer 

network. It skirts the complex issues of the efficiency of parallel processing involved in the internal 

parallelization of an analysis code. 

In the estimates given in this paper, it was assumed that for those approaches involving a system 

analyzer, the system analyzer was based on fixed-point iteration. The parameter which indicates the 

number of required fixed-point iterations is MC. 

The number of FLMs required to triangularize the linear GSE equations is NY3/3 where NY is the 

total number of coupling variables for all disciplines. The number of FLMs required to solve the GSE 

equations by backsubstitution with respect to NV optimization variables is NV • NY2. 

The formulas used in this paper for the ET in terms of number of FLMs for the different approaches 

and implementation options are given in the Appendix. 

Numerical Experiments 

Experiments were conducted using the Appendix formulas to determine ET values and their dependence 

on selected parameters for the options from Table 2 and for tests cases described in this section. 

For comparison and display purposes, the ET data are normalized by the ET of the most expensive 

analysis. The base 10 logarithm is then taken of the normalized ET to emphasize its OOM rather than 

the ET value itself. The differences in ET are considered meaningful only if they exceed at least an half 

of an OOM. This is done to render the comparisons meaningful despite that it is a function of parameters 

that are very problem-dependent and are, therefore, "soft" data subject to assumptions of the parameter 

values that may vary over many OOM's. 
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Two-Discipline Case 

For the two-discipline system, the baseline values of the problem parameters are suggested by the case 

of minimum weight optimization for a flexible wing treated as a system of two disciplines: aerodynamics 

and structures. The aerodynamic analysis (i=l), by a CFD code might be expected to be much more 

expensive in terms of ET than the structural finite element analysis (i=2), hence the setting of 

NSi=100,000 and NS2=10,000. The state variables for aerodynamics, s1; are the flow data at the grid 

points. For the structure they are the nodal displacements. The number of design variables x that affect 

directly both disciplines is set at NX = 10 to represent the overall wing shape geometry. The number of 

design variables Xj that affect directly the aerodynamics only is NXi=10 to control the shape of those parts 

of the wing that are structurally inert (outside of the structural box), for instance, the leading edge radius. 

The variables x2 are cross-sectional gages that affect directly the structures only. Typically, their number 

is larger than NX and NX1? hence, NX2=100. The coupling variables y,2 and y21 are aerodynamic loads 

and structural displacements, respectively. Using a modal representation of both, their number may be 

kept reasonably low, e.g., NY12=NY21=50. 

Based on the experience (Sobieszczanski et al. 1976) one assumes MC=5. This low number is 

reasonable only if the wing structure had been initialized to be sufficiently stiff, otherwise MC might be 

very large or the iteration may not even converge. The implication is that the discipline of structures 

would do a certain amount of prerequisite design work, assuming a constant magnitude and distribution 

of aerodynamic loads, before the coupled problem optimization begins. Similarly it is known from 

experience (Schmit 1981) that MO may range for a low value of less than 10 to 40 and it is, therefore, 

set at MO=30. An assumed, nominal value for MA=5 was used. 

Twenty-Discipline Case 

A hypothetical system of twenty disciplines was assumed as an abstract example, not rooted in any 

specific application but intended to shed light on the use of the fundamental approaches in a large 

engineering system. The parameter values were taken as: NX=10, NXj=100, and NSj=10,000 for all 

disciplines i, and NYjj=5 for all discipline i-j pairs. These data defined Variant 1 of this case that will be 

referred to as "analysis-intensive" because the number of the state variables is so much larger than the 

number of the design variables. In Variant 2 of the same case, referred to as "design-intensive," the 

setting of NXi=NSi=l,000 was used. 

Experimental Results 

The ET data are displayed by means of line graphs in Figures 8, 9, and 10 which are constructed as 

follows. The vertical scale is in loglO of the normalized ET to illustrate the ET OOM as a multiple of 

that disciplinary analysis which is the most expensive one in the system at hand.    To facilitate 
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comparisons, the vertical scale is the same in all three figures. Each of the fundamental approaches is 

represented in the graph by one line, labeled with an approach acronym consisting of the first letters from 

its first, middle, and last names. For comparison convenience, the line for each approach links the discrete 

data points corresponding to the implementation options from Table 2. Note that Options 3 and 4 from 

Table 2 are merged in the figures because it turned out that PI nearly obliterated the difference in ET 

between FD and DAS in all the tests. 

Scanning the graphs by eye conveys a lot of information. For example, the left-to-right scan of a 

particular line shows how sensitive the corresponding fundamental approach is- to the implementation 

options, including the choice between the serial (SI) and parallel (PI) computing and the choice between 

finite differencing (FD) and analytical sensitivity analysis (DAS). The vertical scan reveals the differences 

between the fundamental approaches, accentuated by the use of solid and empty symbols for single-level 

and multilevel optimization approaches, respectively. Finally, simultaneous scanning of the graphs in 

Figures 8, 9, and 10 gives an idea about the trends generated by changing the dimensionality and nature 

of the problem. 

One must be cautious in drawing conclusions from the data in Figures 8, 9, and 10 about the relative 

cost advantages for each fundamental approach. For example, the ET reductions for FD from switching 

to PI from SI are shown by comparing the right-most and the left-most data point columns in these 

figures, and the corresponding benefit for DAS is illustrated by comparing the right-most and the middle 

data point columns in these figures. These benefits must be tempered by the realization that they are, 

partially at least, due to the unlimited machine assumption. In comparing the ET cost of FD and DAS, 

one should also remember the accuracy advantages of DAS over FD. Finally, one needs to bear in mind 

that the PI considered herein is coarse-grained, hence not representative of the full potential of parallel 

computing. This assumption is, at least to a degree, the cause of no ET reduction due to PI in S-S-S. 

Finally, a reminder is in order that ET differences below 0.5 OOM are not significant in the comparisons. 

The assumed values for the iteration parameters MA MC, and MO were increased, one at a time, by 

a factor of 10 to assess the effect on the relative ranking of the approaches. Graphs similar to Figures 8, 

9, and 10 were produced. Increasing MA tended to reduce ET in the SAND-SAND approaches relative 

to the others. Increasing MC increased ET in the SAND-NAND approaches, while increasing MO 

increased ET in the multilevel approaches. The FLM count formulas for analysis and optimization were 

also reduced to account for sparsity. This tended to reduce the SAND-SAND ET relative to the others. 

VII. Managerial Considerations in the Choice of Approach 

These considerations may be as important as the ET comparisons. To develop a broad work front of 

people and machines, an engineering organization is customarily divided into groups that correlate with 

the disciplines in the fundamental approaches discussed herein. These groups are intended to work 

concurrently. The resulting compression of the project calendar time is the same motivation that underlies 

the development of concurrent processing in computer technology. 
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Clearly, the need to enable the human organization groups to work concurrently is supported by the 

multilevel optimization approaches. These approaches have additional advantage because they allow 

disciplinary specialists to use their own methods, including informal ones, that have evolved over time, 

to solve their analysis and optimization problems autonomously. This includes the determination within 

disciplines of the values of disciplinary design variables and functions and may even extend to choices 

among discrete design alternatives. This is beneficial not only to the pace and quality of work but also 

to the human motivation. 

Additional consideration is the dependence, at least in short-to-mid term, on the existing analysis and 

optimization software. The same approaches that favor autonomy of the disciplines preserve also usability 

of that software. 

Finally, the real life budgetary and time limits rather than mathematical conditions often become 

de facto termination criteria. This favors the NAND approaches since they produce a succession of 

improving designs with meaningful analysis results available for each. In contrast, the SAND approaches 

produce a usable result only at the very end of their execution. 

VIII.  Concluding Remarks 

The paper identified six fundamental approaches, named by three-part names referring to decomposition 

into levels and treatment of the variables: 1) Single-level vs multilevel optimization (first name Single 

vs Multi); 2) System-level simultaneous analysis and design vs analysis nested in optimization (middle 

name SAND vs AND); 3) Discipline-level simultaneous analysis and design vs analysis nested in 

optimization (last name SAND vs NAND). A compact notation was introduced for these approaches to 

define concisely the multitude of variations that may be developed by mixing, sequencing, and composing 

the approaches. Moreover, each approach may be implemented in a number of options whose defining 

features are techniques for the gradient computation and serial or parallel computing. The approaches 

which have previously been identified in the literature as limited to hierarchic systems have been shown 

to be applicable to nonhierarchic systems. 

The elapsed time (ET) was estimated for different implementation options and test cases. Certain 

conclusions become apparent from these limited results. First, no single approach is fastest for all test 

cases and implementation options. Conversely, no single approach can be identified as being always the 

slowest. Generally, the single-level optimization approaches are fastest on analysis-intensive problems 

while the multilevel optimization approaches are fastest on design-intensive problems. This suggests 

mixing approaches by employing disciplinary optimizers only in disciplines with large numbers of design 

variables. Second, the choice of approach affects the ET as much or more than the choice of 

implementation (SI vs. PI, FD vs. DAS). Furthermore, the amount of savings in ET gained by going from 

SI to PI or from FD to DAS depends on the approach. In some cases the savings may be virtually 

nonexistent while in others they may be dramatic. 

These observations point to the recommendation that for a given real-world multidisciplinary problem 

that is expected to consume considerable resources, one should carefully consider the choice of approach. 
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It would be wise to estimate the computational effort for alternative approaches in much the same way 

as was illustrated for the examples given in this paper, and include memory requirements specific to the 

problem at hand. The managerial benefits of multilevel optimization approaches should also be 

considered. The corollary to the above is that if general-purpose system development is attempted to 

support multidisciplinary optimization in engineering design, that system should be flexible enough to 

offer the users the choice among approaches. 

Since the proper selection of approach is vital to the efficient solution of MDO problems, research is 

needed in the following areas for a better support of this selection process: 

1) Research into MDO fundamental approaches should continue to determine whether any exist that were 

not identified herein. 

2) The fundamental approaches should be demonstrated and compared on the same nonhierarchic multi- 

disciplinary example. 

3) The optimality equivalence of the fundamental approaches should be verified with mathematical rigor. 

4) Formulas and parameter values used to estimate computational effort should be refined and tested on 

numerical results. They should also include the memory requirements. 

5) Multilevel optimization approaches should be extended to allow informal and discrete methods for 

increased disciplinary flexibility. 

6) The convergence properties and computational effort of the SAND approaches should be investigated 

for various engineering disciplines. 
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Appendix:  Elapsed Time (ET) 

Estimation Formulas 

NYi = 2j-iNYji = number of coupling variables input to discipline i 

CAj = MA • NSs
3/3 

CE = NS2 

Single-SAND-SAND 

CO = MO • 1.5 • (NX+SiCNXi+NSi+NYj))3 

SI/FD: ET = MO • ^(CE; • (l+NX+NXj+NSj+NY^+CO 

SI/DAS: ET=MO • ^(CEj • (l+NX+NXj+NY^+CO 

PI/FD: ET = MO • ma^CE^n-CO 

PI/DAS: ET = MO • ma^CE^OO 

Single-SAND-NAND 

CO = MO • 1.5 • (NX+SiCNXi+NY/))3 

SI/FD: ET = MO • ^(CA ' (l+NX+NXj+NY^+CO 

SI/DAS: ET = MO • ^(CA+CEj ■ (NX+NXj+NY,))+CO 

PI/FD: ET = MO • maX;(CA)+CO 

PI/DAS: ET = MO • max^CA+CEO+CO 

Single-NAND-NAND 

CO = MO • 1.5 • (NX+SiNXj)3 

CGSE = CNY^/B-KNX+SiNXi) • G.NY,)2 

SI/FD: ET = MO • (^(MC • CAj+CA • (NX+NXi+NYi))+CGSE)+CO 

SI/DAS: ET = MO • (^(MC • CA+CE, • (NX+NXi+NYi))+CGSE)+CO 

PI/FD: ET = MO • max;(MC • CA)+CO 

PI/DAS: ET = MO • (max,(MC • CAj)+maxi(CEi)+CGSE)+CO 
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Multi-SAND-SAND 

CO = MO -1.5 • NX+SjNYi)3 

COj = MO • 1.5 • (NXj+NSj)3 

SI/FD: ET = MO • ^(MO • CES • (l+NXi+NS^+COj+CE; • (NX+NY^+CO 

SI/DAS: ET =MO • 2,(MO • CE, • (l+NX^+COj+CE, • (NX+NY^+CO 

PI/FD: ET = MO • max^MO • CEi+CO^+CO 

PI/DAS: ET = MO • max;(MO • CEi+COj+CEJ+CO 

Multi-SAND-NAND 

CO = MO • 1.5 • (NX+SiNYj)3 

CO; = MO • 1.5 • (NXj)3 

SI/FD: FT = MO • £i(MO • CA, • (l+NXi)+COi+CAi • (NX+NY^+CO 

SI/DAS: ET = MO • ^(MO • (CAj+CE, • NX^+COi+CE, • (NX+NYs))+CO 

PI/FD: ET = MO • max^O • CAj+CO^+CO 

PI/DAS: ET = MO • max^MO • (CAj+CEJ+COj+CEJ+CO 

Multi-NAND-NAND 

CO = MO -1.5 • (NX+^iSjl)3 

CO; = MO • 1.5 • (NXj)3 

CGSE = (XNY^/S+CNX+^NXi) • (2.NY,)2 

SI/FD: ET = MO • (2i(MC • CAj+CA, • (NX+NXi+NYi)fCGSE+ I;(MO • CAj • (l+NXJ 

+COi+CAi • NX))+CO 

SI/DAS:       ET = MO • (2i(MC • CAi+CE,- (NX+NXi+NYi))+CGSE+ ^(MO • (CAi+CEi • NX,) 

H-COj+CEi • NX))+CO 

PI/FD: ET = MO • (max;(MC • CA^+max^MO • CAj+COj))+CO 

PI/DAS:       ET = MO • (max^MC • CA^ma-jCCE^+CGSE+maXiCMO • (CAj+CE^+COj+CE^+CO 
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Table 1. Aircraft Wing Multidisciplinary Optimization Problem: 
Examples of Variables and Design Functions 

Symbols Examples 

Sl fuel required to fly a given mission 

S2 flow velocities 

s3 nodal displacements 

yn angle of attack for various flight regimes 

yis fuel volume to be contained in the wing 

y2i aerodynamic drag for given angle of attack and Mach number 

y23 aerodynamic loads 

y3i structural weight 

y32 displacements that alter aerodynamic shape 

X wing planform geometry; airfoil depth-to-chord ratio 

x, flight profile: Mach numbers vs. attitude data 

x2 airfoil geometry outside of structural box 

x3 cross-sectional dimensions of the wing structural box 

gl limits on the take-off and landing run lengths; required go-around climb rate; 

required range for a given payload 

g2 aerodynamic pressure distribution limits; angle of attack limit; 

g3 stress and displacement limits; required flutter velocity 

f, minimum take-off gross weight 

f2 minimum drag 

f3 minimum structural weight 
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Table 2.  Implementation Options 

Option SI PI FD OSA GSE DAS Designatio 

n 

1 0 0 o 0 SI/FD 

2 o o o o SI/DAS 

3 o o PI/RD 

4 o o o 0 PI/DAS 
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